Nasal potential difference to detect Na+ channel dysfunction in acute lung injury.
نویسندگان
چکیده
Pulmonary fluid clearance is regulated by the active transport of Na(+) and Cl(-) through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na(+) channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na(+) channels and allow targeted therapy toward Na(+) channel function.
منابع مشابه
The Expression of Water and Ion Channels in Diffuse Alveolar Damage Is Not Dependent on DAD Etiology
INTRODUCTION Aquaporins and ion channels are membrane proteins that facilitate the rapid movement of water and solutes across biological membranes. Experimental and in vitro studies reported that the function of these channels and pulmonary edema resolution are impaired in acute lung injury (ALI). Although current evidence indicates that alveolar fluid clearance is impaired in patients with ALI...
متن کاملHypoxia reversibly inhibits epithelial sodium transport but does not inhibit lung ENaC or Na-K-ATPase expression.
Hypoxia reduces alveolar liquid clearance and the nasal potential difference, a marker of airway epithelial sodium transport. The mechanisms underlying this impaired epithelial sodium transport in vivo remain uncertain. We hypothesized that epithelial sodium transport impaired by hypoxia would recover quickly with reoxygenation and that hypoxia decreases the expression of lung epithelial sodium...
متن کاملEffect of Lung Recruitment Maneuver in Children with Acute Lung Injury
Background Acute lung injury (ALI) is defined as PaO2/FiO2 less than 300 with bilateral pulmonary infiltrates, without pressure is the top of the left atrium. Early diagnosis and treatment of pediatric ALI and find new cases is very important. Accurate diagnosis and effective steps to treating these patients is essential in the outcome of ALI. This study was conducted to show the impact of recr...
متن کاملChronic Hypoxemia in Children With Congenital Heart Defect Impairs Airway Epithelial Sodium Transport.
OBJECTIVE Ambient hypoxia impairs the airway epithelial Na transport, which is crucial in lung edema reabsorption. Whether chronic systemic hypoxemia affects airway Na transport has remained largely unknown. We have therefore investigated whether chronic systemic hypoxemia in children with congenital heart defect affects airway epithelial Na transport, Na transporter-gene expression, and short-...
متن کاملGas Exchange Disturbances Regulate Alveolar Fluid Clearance during Acute Lung Injury
Disruption of the alveolar-capillary barrier and accumulation of pulmonary edema, if not resolved, result in poor alveolar gas exchange leading to hypoxia and hypercapnia, which are hallmarks of acute lung injury and the acute respiratory distress syndrome (ARDS). Alveolar fluid clearance (AFC) is a major function of the alveolar epithelium and is mediated by the concerted action of apically-lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 300 3 شماره
صفحات -
تاریخ انتشار 2011